成a人片国产精品_色悠悠久久综合_国产精品美女久久久久久2018_日韩精品一区二区三区中文精品_欧美亚洲国产一区在线观看网站_中文字幕一区在线_粉嫩一区二区三区在线看_国产亚洲欧洲997久久综合_不卡一区在线观看_亚洲欧美在线aaa_久久99精品国产_欧美卡1卡2卡_国产精品你懂的_日韩精品91亚洲二区在线观看_国内一区二区视频_91丨国产丨九色丨pron

代寫(xiě)COMP34212、代做Python/c++程序設(shè)計(jì)

時(shí)間:2024-04-29  來(lái)源:  作者: 我要糾錯(cuò)



COMP34212 Cognitive Robotics Angelo Cangelosi
COMP34212: Coursework on Deep Learning and Robotics
34212-Lab-S-Report
Submission deadline: 18 April 2024, 18:00 (BlackBoard)
Aim and Deliverable
The aim of this coursework is (i) to analyse the role of the deep learning approach within the
context of the state of the art in robotics, and (ii) to develop skills on the design, execution and
evaluation of deep neural networks experiments for a vision recognition task. The assignment will
in particular address the learning outcome LO1 on the analysis of the methods and software
technologies for robotics, and LO3 on applying different machine learning methods for intelligent
behaviour.
The first task is to do a brief literature review of deep learning models in robotics. You can give a
summary discussion of various applications of DNN to different robotics domains/applications.
Alternatively, you can focus on one robotic application, and discuss the different DNN models used
for this application. In either case, the report should show a good understanding of the key works in
the topic chosen.
The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron
(MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and
analyse new training simulations. This will allow you to evaluate the role of different
hyperparameter values and explain and interpret the general pattern of results to optimise the
training for robotics (vision) applications. You should also contextualise your work within the state
of the art, with a discussion of the role of deep learning and its pros and cons for robotics research
and applications.
You can use the standard object recognition datasets (e.g. CIFAR, COCO) or robotics vision datasets
(e.g. iCub World1, RGB-D Object Dataset2). You are also allowed to use other deep learning models
beyond those presented in the lab.
The deliverable to submit is a report (max 5 pages including figures/tables and references) to
describe and discuss the training simulations done and their context within robotics research and
applications. The report must also include on online link to the Code/Notebook within the report,
or ad the code as appendix (the Code Appendix is in addition to the 5 pages of the core report). Do
not use AI/LLM models to generate your report. Demonstrate a credible analysis and discussion of
1 https://robotology.github.io/iCubWorld/
2 https://rgbd-dataset.cs.washington.edu/index.html
COMP34212 Cognitive Robotics Angelo Cangelosi
your own simulation setup and results, not of generic CNN simulations. And demonstrate a
credible, personalised analysis of the literature backed by cited references.
Marking Criteria (out of 30)
1. Contextualisation and state of the art in robotics and deep learning, with proper use of
citations backing your academic brief review and statements (marks given for
clarity/completeness of the overview of the state of the art, with spectrum of deep learning
methods considered in robotics; credible personalised critical analysis of the deep learning
role in robotics; quality and use of the references cited) [10]
2. A clear introductory to the DNN classification problem and the methodology used, with
explanation and justification of the dataset, the network topology and the hyperparameters
chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity
and appropriateness of the network topology; hyperparameter exploration approach; data
processing and coding requirements) [4]
4. Description, interpretation, and assessment of the results on the hyperparameter testing
simulations; include appropriate figures and tables to support the results; depth of the
interpretation and assessment of the quality of the results (the text must clearly and
credibly explain the data in the charts/tables); Discussion of alternative/future simulations
to complement the results obtained) [13]
5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if
code/notebook (link to external repository or as appendix) is not included.
Due Date: 18 April 2024, h18.00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

標(biāo)簽:

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:ENGI 1331代做、代寫(xiě)R程序語(yǔ)言
  • 下一篇:代做FINM7008、代寫(xiě)FINM7008 Applied Investments
  • 無(wú)相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲(chóng)
    油炸竹蟲(chóng)
    酸筍煮魚(yú)(雞)
    酸筍煮魚(yú)(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚(yú)
    香茅草烤魚(yú)
    檸檬烤魚(yú)
    檸檬烤魚(yú)
    昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
    昆明西山國(guó)家級(jí)風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗(yàn)證碼平臺(tái) 幣安官網(wǎng)下載 歐冠直播 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    成a人片国产精品_色悠悠久久综合_国产精品美女久久久久久2018_日韩精品一区二区三区中文精品_欧美亚洲国产一区在线观看网站_中文字幕一区在线_粉嫩一区二区三区在线看_国产亚洲欧洲997久久综合_不卡一区在线观看_亚洲欧美在线aaa_久久99精品国产_欧美卡1卡2卡_国产精品你懂的_日韩精品91亚洲二区在线观看_国内一区二区视频_91丨国产丨九色丨pron
    国产一区二区成人久久免费影院| 成人激情小说网站| 久久激情综合网| 91视视频在线观看入口直接观看www | 亚洲免费观看在线观看| 国内不卡的二区三区中文字幕| 欧美日韩亚洲另类| 亚洲免费在线播放| av日韩在线网站| 国产午夜精品久久久久久久 | 91香蕉国产在线观看软件| 久久品道一品道久久精品| 天天操天天综合网| 在线看国产一区二区| 国产精品久久久久婷婷| 国模无码大尺度一区二区三区| 欧美肥妇free| 亚洲国产视频一区| 一本大道久久a久久精品综合| 国产精品二区一区二区aⅴ污介绍| 国产在线看一区| 精品国产亚洲一区二区三区在线观看| 日韩影院精彩在线| 欧美福利视频导航| 日韩**一区毛片| 91麻豆精品国产91| 午夜精品一区二区三区电影天堂| 在线免费精品视频| 亚洲一区二区三区在线看| 在线看国产一区二区| 亚洲综合小说图片| 在线观看91视频| 亚洲一区二区三区小说| 欧美视频一二三区| 亚洲午夜激情av| 欧美午夜视频网站| 午夜国产不卡在线观看视频| 欧美精品丝袜久久久中文字幕| 午夜精品福利一区二区蜜股av| 欧美老人xxxx18| 日韩不卡手机在线v区| 欧美一级片在线| 麻豆精品一区二区综合av| 日韩欧美国产高清| 精品一区二区三区免费播放| 久久免费看少妇高潮| 国产成人在线视频网站| 欧美激情在线免费观看| eeuss鲁片一区二区三区在线观看| 国产精品国产三级国产普通话三级 | 国产成人夜色高潮福利影视| 国产欧美一区二区精品仙草咪| 粉嫩高潮美女一区二区三区| 亚洲国产成人私人影院tom| 风间由美一区二区av101 | 蜜臀久久久99精品久久久久久| 精品毛片乱码1区2区3区| 国产综合一区二区| 中文字幕一区三区| 91福利精品视频| 日韩精品五月天| 精品国产91乱码一区二区三区| 国产激情视频一区二区三区欧美| 国产精品美女久久久久高潮| 色女孩综合影院| 天堂成人国产精品一区| 欧美电视剧免费全集观看| 国产乱码字幕精品高清av | 国产精品天干天干在观线| 91免费国产视频网站| 午夜视频在线观看一区二区| 精品国产一区二区三区av性色| 成人激情开心网| 亚洲午夜在线观看视频在线| 精品少妇一区二区三区在线视频| 高清久久久久久| 亚洲一区二区三区四区中文字幕| 日韩精品在线一区| 99久久婷婷国产精品综合| 石原莉奈在线亚洲三区| 久久综合狠狠综合| 91看片淫黄大片一级在线观看| 丝袜美腿亚洲一区二区图片| 国产午夜精品久久| 欧美吞精做爰啪啪高潮| 激情欧美日韩一区二区| 亚洲黄色录像片| 日韩精品专区在线影院观看| 91在线观看成人| 久久国产福利国产秒拍| 亚洲久草在线视频| 日韩欧美国产1| 99re免费视频精品全部| 蜜臀久久99精品久久久久宅男| 国产精品情趣视频| 欧美一级精品大片| 99精品欧美一区二区三区综合在线| 日韩电影在线一区| 综合久久久久久久| 日韩精品资源二区在线| 日本丶国产丶欧美色综合| 韩国一区二区三区| 亚洲一区二区高清| 国产色91在线| 欧美日韩精品系列| 国v精品久久久网| 免费久久99精品国产| 亚洲麻豆国产自偷在线| 亚洲精品在线网站| 欧美亚洲综合久久| 国产成人av电影免费在线观看| 亚洲国产成人91porn| 国产精品久久久久久久裸模| 日韩欧美国产电影| 欧美性高清videossexo| 成人在线视频一区二区| 奇米精品一区二区三区在线观看 | 久久一夜天堂av一区二区三区| 91久久精品网| 国产成人亚洲精品青草天美| 日韩高清电影一区| 亚洲摸摸操操av| 中文字幕av一区二区三区高 | 亚洲精品成人少妇| 久久久午夜精品| 在线播放中文一区| 色一区在线观看| 国产99精品视频| 久久99国产精品麻豆| 亚洲国产精品久久久男人的天堂| 中文乱码免费一区二区 | 日本不卡视频一二三区| 亚洲精品videosex极品| 欧美激情在线一区二区三区| 精品少妇一区二区三区视频免付费 | 中文字幕在线观看一区| 亚洲精品一线二线三线无人区| 欧美日韩视频在线一区二区| 91影视在线播放| 成人av电影在线| 国产成人福利片| 国产制服丝袜一区| 精品一区二区三区免费观看| 免费av网站大全久久| 偷偷要91色婷婷| 亚洲五码中文字幕| 玉米视频成人免费看| 成人欧美一区二区三区白人| 亚洲国产岛国毛片在线| 国产欧美日韩在线看| 久久久不卡网国产精品二区| 精品久久久久久综合日本欧美| 日韩欧美国产综合一区| 91麻豆精品国产自产在线观看一区| 欧美日韩一区二区在线观看| 在线观看成人免费视频| 欧美专区日韩专区| 在线观看亚洲a| 欧美在线小视频| 欧美三级中文字幕| 欧美午夜精品久久久久久超碰| 在线免费观看成人短视频| 欧美中文字幕一二三区视频| 色妹子一区二区| 欧洲一区二区av| 欧美日韩一区二区在线观看视频 | 制服.丝袜.亚洲.另类.中文 | 亚洲国产精品自拍| 亚洲国产综合色| 亚洲成人精品一区| 亚洲国产精品影院| 日日夜夜精品免费视频| 日日欢夜夜爽一区| 日本强好片久久久久久aaa| 蜜桃视频一区二区三区在线观看| 日本aⅴ免费视频一区二区三区| 日本aⅴ免费视频一区二区三区 | 色www精品视频在线观看| 日本道精品一区二区三区| 色八戒一区二区三区| 欧美午夜寂寞影院| 91精品国产高清一区二区三区 | 五月婷婷综合网| 视频一区二区三区在线| 免费成人小视频| 国产一区欧美日韩| 成人激情小说乱人伦| 91麻豆免费在线观看| 欧美综合在线视频| 欧美一区国产二区| 久久久久久久免费视频了| 中文字幕成人av| 一区二区三区四区亚洲| 视频一区二区国产| 国产一区二区日韩精品| 不卡av在线网| 欧美色综合影院| 欧美成人女星排名| 国产精品毛片大码女人| 樱花影视一区二区|