成a人片国产精品_色悠悠久久综合_国产精品美女久久久久久2018_日韩精品一区二区三区中文精品_欧美亚洲国产一区在线观看网站_中文字幕一区在线_粉嫩一区二区三区在线看_国产亚洲欧洲997久久综合_不卡一区在线观看_亚洲欧美在线aaa_久久99精品国产_欧美卡1卡2卡_国产精品你懂的_日韩精品91亚洲二区在线观看_国内一区二区视频_91丨国产丨九色丨pron

COMP 315 代做、代寫 java 語言編程

時間:2024-03-10  來源:  作者: 我要糾錯



1 Introduction
Assignment 1: Javascript
COMP 315: Cloud Computing for E-Commerce March 5, 2024
A common task in cloud computing is data cleaning, which is the process of taking an initial data set that may contain erroneous or incomplete data, and removing or fixing those elements before formatting the data in a suitable manner. In this assignment, you will be tested on your knowledge of JavaScript by implementing a set of functions that perform data cleaning operations on a dataset.
2 Ob jectives
By the end of this assignment, you will:
• Gain proficiency in using JavaScript for data manipulation.
• Be able to implement various data cleaning procedures, and understand the significance of them. • Have developed problem-solving skills through practical application.
3 Problem description
For this task, you have been provided with a raw dataset of user information. You must carry out the following series of operations:
• Set up a Javascript class in the manner described in Section 4.
• Convert the data into the appropriate format, as highlighted in Section 5
• Fix erroneous values where possible e.g. age being a typed value instead of a number, age being a real number instead of an integer, etc; as specified in Section 6.
• Produce functions that carry out the queries specified in Section 7.
 Data name Title
First name
Middle name Surname Date of birth Age
Email
Note
This value may be either: Mr, Mrs, Miss, Ms, Dr, or left blank.
Each individual must have one. The first character is capitalised and the rest are lower case, with the exception of the first character after a hyphen.
This may be left blank.
Each individual must have one.
This must be in the format of DD/MM/YYYY.
All data were collected on 26/02/2024, and the age values should reflect this.
The format should be [first name].[surname]@example.com. If two individuals have the same address then an ID is added to differentiate them eg john.smith1, john.smith2, etc
Table 1: The attributes that should be stored for each user
         1

4 Initial setup
Create a Javascript file called Data Processing.js. Create a class within that file called Data Processing. Write a function within that class called load CSV that takes in the filename of a csv file as an input, eg load CSV (”User Details”). The resulting data should be saved locally within the class as a global variable called raw user data. Write a function called format data, which will have no variables are a parameter. The functionality of this method is described in Section 5. Write a function called clean data, which will also have no parameters. The functionality of this method is similarly described in Section 6.
5 Format data
Within the function format data, the data stored within raw user data should be processed and output to a global variable called formatted user data. The data are initially provided in the CSV format, with the delimiter being the ’,’ character. The first column of the data is the title and full name of the user. The second and third columns are the date of birth, and age of the user, respectively. Finally, the fourth column is the email of the user. Ensure that the dataset is converted into the appropriate format, outlined in Table 1. This data should be saved in the JSON format (you may use any built in JavaScript method for this). The key for each of the values should be names shown in the ’Data name’ column, however converted to lower case with an underscore instead of a space character eg ’first name’.
6 Data cleaning
Within the function clean data, the data cleaning tasks should be carried out, loading the data stored in formatted user data. All of this code may be written within the clean data function, or may be handled by a series of functions that are called within this class. The latter option is generally considered better practice. Examine the data in order to determine which values are in the incorrect format or where values may be missing. If a value is in the incorrect format then it must be converted to be in the correct format. If a value is missing or incorrect, then an attempt should be made to fill in that data given the other values. The cleaned data should be saved into the global variable cleaned user data.
7 Queries
Often, once the data has been processed, we perform a series of data analysis tasks on the cleaned data. Each of these queries are outlined in Table 2. Write a function with the name given in the ’Function name’ column, that carries out the query given in the corresponding ’Query description’. The answer should be returned by the function, and not stored locally or globally.
 Function name
most common surname average age
youngest dr
most common month
Query description
What is the most common surname name?
What is the average age of the users, given the values stored in the ’age’ column? This should be a real number to 3 significant figures.
Return all of the information about the youngest individual in the dataset with the title Dr.
What is the most common month for individuals in the data set?
        percentage titles
 What percentage of the dataset has each of the titles? Return this in the form of an array, following the order specified in the ’Title’ row of Table 1. This should included the blank title, and the percentage should be rounded to the nearest integer using bankers rounding.
  percentage altered
 A number of values have been altered between formatted user data and cleaned user data. What percentage of values have been altered? This should be a real number to 3 significant figures.
  Table 2: The queries that should be carried out on the cleaned data
2

8 Marking
The marking will be carried out automatically using the CodeGrade marking platform. A series of unit tests will be ran, and the mark will correspond with how many of those unit tests were successfully executed. Your work will be submitted to an automatic plagiarism/collusion detection system, and those exceeding a threshold will be reported to the Academic Integrity Officer for investigation regarding adhesion to the university’s policy https://www.liverpool.ac.uk/media/livacuk/tqsd/code-of-practice-on-assessment/appendix L cop assess.pdf.
9 Deadline
The deadline is 23:59 GMT Friday the 22nd of March 2024. Late submissions will have the typical 5% penalty applied for each day late, up to 5 days. Submissions after this time will not be marked. https: //www.liverpool.ac.uk/aqsd/academic-codes-of-practice/code-of-practice-on-assessment/
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫 CSSE7030 Connect 4
  • 下一篇:代做ACS61012、代寫ACS61012 Machine Vision
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    成a人片国产精品_色悠悠久久综合_国产精品美女久久久久久2018_日韩精品一区二区三区中文精品_欧美亚洲国产一区在线观看网站_中文字幕一区在线_粉嫩一区二区三区在线看_国产亚洲欧洲997久久综合_不卡一区在线观看_亚洲欧美在线aaa_久久99精品国产_欧美卡1卡2卡_国产精品你懂的_日韩精品91亚洲二区在线观看_国内一区二区视频_91丨国产丨九色丨pron
    日韩一区二区三区在线视频| 久久网站最新地址| 欧美一级片在线观看| 欧美国产亚洲另类动漫| 日韩av在线免费观看不卡| 99久久精品费精品国产一区二区| 精品乱人伦一区二区三区| 亚洲成a人v欧美综合天堂下载| jizzjizzjizz欧美| 久久久久久影视| 麻豆久久久久久| 欧美综合色免费| 中文字幕一区二区三区四区不卡| 国产一区二区成人久久免费影院| 欧美高清性hdvideosex| 一区二区三区日韩| 91免费看`日韩一区二区| 欧美国产日韩a欧美在线观看 | 老鸭窝一区二区久久精品| 91官网在线免费观看| 国产精品久久久久久妇女6080| 国模一区二区三区白浆| 日韩午夜av电影| 日韩高清中文字幕一区| 欧美日韩免费观看一区二区三区| 亚洲欧美日本在线| 91理论电影在线观看| 亚洲欧美在线观看| 99精品热视频| 亚洲欧洲在线观看av| 成人av在线一区二区| 中文字幕久久午夜不卡| 国产成人免费在线| 亚洲国产精品成人综合| 成人黄色在线看| 国产精品久久久久久久久晋中 | 欧美性一级生活| 夜色激情一区二区| 欧美亚洲综合久久| 午夜精品久久久久久久99水蜜桃| 欧美日韩精品综合在线| 午夜电影一区二区| 欧美一区二区三区喷汁尤物| 麻豆国产精品官网| 久久综合资源网| 国产不卡高清在线观看视频| 国产精品女人毛片| 91网站最新地址| 亚洲制服丝袜av| 7777精品伊人久久久大香线蕉完整版| 青娱乐精品在线视频| 日韩欧美一级片| 国产精品亚洲第一区在线暖暖韩国 | caoporm超碰国产精品| 中文字幕在线不卡一区| 日本久久电影网| 性做久久久久久免费观看| 7777精品伊人久久久大香线蕉最新版 | 亚洲精品久久久久久国产精华液| 色老综合老女人久久久| 亚洲成a人v欧美综合天堂下载| 在线成人免费观看| 狠狠狠色丁香婷婷综合激情| 国产亚洲精品aa| 91在线观看美女| 视频在线观看91| 2023国产精华国产精品| 波多野结衣精品在线| 一区二区三区不卡视频在线观看 | 欧美日韩日本视频| 奇米影视一区二区三区| 久久综合久久综合久久| 波多野结衣中文字幕一区二区三区| 亚洲蜜臀av乱码久久精品蜜桃| 欧美日韩免费高清一区色橹橹| 久久精品二区亚洲w码| 国产精品天天看| 欧美色图免费看| 国产一区在线看| 亚洲伦理在线免费看| 日韩一级精品视频在线观看| 高清久久久久久| 一区二区在线观看免费视频播放| 91精品黄色片免费大全| 国产成人综合网站| 一区二区三区加勒比av| 精品久久久网站| 一本一道久久a久久精品| 午夜国产精品一区| 国产日韩欧美精品电影三级在线| 91色乱码一区二区三区| 日韩激情av在线| 国产精品国产三级国产普通话三级 | 精品免费国产一区二区三区四区| 国产成人午夜精品影院观看视频| 一区二区三区四区在线播放| 精品国产乱码久久久久久牛牛 | 色综合久久综合中文综合网| 日本三级韩国三级欧美三级| 国产亚洲一区二区三区在线观看| 色94色欧美sute亚洲线路一ni| 久久不见久久见免费视频1| 最新成人av在线| 欧美成人激情免费网| 91麻豆免费观看| 国内精品久久久久影院薰衣草| 亚洲美女一区二区三区| 欧美精品一区视频| 欧美影院一区二区三区| 国产精品自拍三区| 视频一区中文字幕| 亚洲天堂2014| 久久精品亚洲国产奇米99| 欧美精品欧美精品系列| 成人av电影在线观看| 秋霞成人午夜伦在线观看| 亚洲黄色性网站| 国产欧美综合在线观看第十页| 欧美福利一区二区| 91亚洲资源网| 国产激情视频一区二区在线观看| 无码av中文一区二区三区桃花岛| 日韩一区欧美小说| 久久精品一二三| 日韩三级.com| 欧美日韩国产成人在线免费| 91在线无精精品入口| 国产精品中文欧美| 日本网站在线观看一区二区三区| 一区二区视频免费在线观看| 国产精品私人影院| 2023国产精品自拍| 日韩亚洲电影在线| 欧美日本一道本在线视频| 91色porny蝌蚪| 成人激情黄色小说| 韩国女主播一区| 蜜桃av一区二区| 午夜精品久久久久久久久久 | 丝袜美腿成人在线| 一区二区三区免费| 日韩毛片高清在线播放| 中文字幕不卡的av| 国产欧美在线观看一区| 精品久久免费看| 日韩视频一区二区三区| 欧美猛男超大videosgay| 一本一道波多野结衣一区二区| 不卡视频一二三| 丁香婷婷综合网| 国产成人av电影在线观看| 国产综合色产在线精品| 麻豆精品新av中文字幕| 免费高清在线一区| 青椒成人免费视频| 奇米影视7777精品一区二区| 日韩av一级电影| 日本不卡一区二区三区高清视频| 亚洲福利一二三区| 亚洲国产成人av网| 午夜av一区二区三区| 丝袜国产日韩另类美女| 日日夜夜精品视频天天综合网| 亚洲成a人在线观看| 午夜精品成人在线视频| 亚洲成人免费观看| 丝袜诱惑亚洲看片| 青娱乐精品在线视频| 蜜桃久久av一区| 久久不见久久见中文字幕免费| 久久99精品久久久久久久久久久久 | 狠狠狠色丁香婷婷综合激情| 国内成人免费视频| 国产一区二区不卡老阿姨| 国产制服丝袜一区| 国产福利视频一区二区三区| 成人网页在线观看| 99re这里都是精品| 在线免费观看日本欧美| 欧美性猛片aaaaaaa做受| 欧美福利一区二区| 欧美变态tickle挠乳网站| 久久综合色8888| 中日韩免费视频中文字幕| 亚洲欧洲日韩一区二区三区| 亚洲精品高清在线| 亚洲午夜一区二区| 免费成人av在线播放| 国产精品一区免费视频| 成人精品在线视频观看| 日本韩国一区二区| 欧美疯狂性受xxxxx喷水图片| 日韩一区二区三区免费看| 日韩免费福利电影在线观看| 久久久蜜臀国产一区二区| 国产精品色眯眯| 夜夜精品浪潮av一区二区三区 | 欧美视频一区二区在线观看| 555www色欧美视频| 久久综合九色综合欧美就去吻|