成a人片国产精品_色悠悠久久综合_国产精品美女久久久久久2018_日韩精品一区二区三区中文精品_欧美亚洲国产一区在线观看网站_中文字幕一区在线_粉嫩一区二区三区在线看_国产亚洲欧洲997久久综合_不卡一区在线观看_亚洲欧美在线aaa_久久99精品国产_欧美卡1卡2卡_国产精品你懂的_日韩精品91亚洲二区在线观看_国内一区二区视频_91丨国产丨九色丨pron

代寫DTS101TC Introduction to Neural Networks Coursework

時(shí)間:2024-03-01  來源:  作者: 我要糾錯(cuò)


Due: Sunday Apr.21th, 2024 @ 17:00

Weight: 100%

Overview

This coursework is the sole assessment for DTS101TC and aims to evaluate your compre-hension of the module. It consists of three sections: 'Short Answer Question', 'Image Classification Programming', and 'Real-world Application Question'. Each question must be answered as per the instructions provided in the assignment paper. The programming task necessitates the use of Python with PyTorch within a Jupyter Notebook environment, with all output cells saved alongside the code.

Learning Outcomes

A.   Develop an understanding of neural networks  –  their architectures, applications  and limitations.

B.   Demonstrate the ability to implement neural networks with a programming language

C.   Demonstrate the  ability to provide critical analysis on real-world problems and design suitable solutions based on neural networks.

Policy

Please save your assignment in a PDF document, and package your code as a ZIP file. If there are any errors in the program, include debugging information. Submit both the answer sheet and the ZIP code file via Learning Mall Core to the appropriate drop box. Electronic submission is the only method accepted; no hard copies will be accepted.

You must download your file and check that it is viewable after submission. Documents may become  corrupted  during  the  uploading  process  (e.g.  due  to  slow  internet  connections). However, students themselves are responsible for submitting a functional and correct file for assessments.

Avoid Plagiarism

.     Do NOT submit work from others.

.     Do NOT share code/work with others.

.     Do NOT copy and paste directly from sources without proper attribution.

.     Do NOT use paid services to complete assignments for you.

Q1. Short Answer Questions [40 marks]

The questions test general knowledge and understanding of central concepts in the course. The answers should be short. Any calculations need to be presented.

1.  (a.)  Explain the concept of linear separability. [2 marks]

(b.)  Consider the following data points from two categories: [3 marks]

X1  : (1, 1)    (2, 2)    (2, 0);

X2  : (0, 0)    (1, 0)    (0, 1).

Are they linearly separable? Make a sketch and explain your answer.

2.  Derive the gradient descent update rule for a target function represented as

od  = w0 + w1 x1 + ... + wnxn

Define the squared error function first, considering a provided set of training examples D, where each training example d ∈ D is associated with the target output td. [5 marks]

3.  (a.)  Draw a carefully labeled diagram of a 3-layer perceptron with 2 input nodes, 3 hidden nodes, 1 output node and bias nodes. [5 marks]

(b.)  Assuming that the activation functions are simple threshold, f(y) = sign(y), write down the input- output functional form of the overall network in terms of the input-to-hidden weights, wab , and the hidden-to-output weights, ˜(w)bc. [5 marks]

(c.)  How many distinct weights need to be trained in this network? [2 marks]

(d.)  Show that it is not possible to train this network with backpropagation. Explain what modification is necessary to allow backpropagation to work. [3 marks]

(e.)  After you modified the activation function, using the chain rule, calculate expressions for the fol- lowing derivatives

(i.) ∂J/∂y / (ii.) ∂J/∂˜(w)bc

where J is the squared error, and t is the target. [5 marks]

4.  (a.)  Sketch a simple recurrent network, with input x, output y, and recurrent state h. Give the update equations for a simple RNN unit in terms of x, y, and h. Assume it usestanh activation. [5 marks]

(b.)  Name one example that can be more naturally modeled with RNNs than with feedforward neural networks?  For a dataset X := (xt ,yt )1(k), show how information is propagated by drawing a feed-

forward neural network that corresponds to the RNN from the figure you sketch for k = 3.  Recall that a feedforward neural network does not contain nodes with a persistent state. [5 marks]

Q2. Image Classification Programming [40 marks]

For this  question,  you  will  build your  own image  dataset  and  implement a neural network  by Pytorch.   The question is split in a number of steps.  Every  step  gives you some marks.  Answer the  questions for  each step and include the screenshot of code  outputs  in your answer sheet.

- Language and Platform Python  (version  3.5  or  above)  with  Pytorch  (newest  version). You  may  use any libraries available on Python platform, such as numpy, scipy, matplotlib, etc.  You need to run the code in the jupyter notebook.

- Code Submission All of your dataset,  code  (Python files and ipynb files) should be  a package in a single ZIP file,  with  a PDF of your IPython  notebook with  output cells. INCLUDE your dataset in the zip file.

1. Dataset Build [10 marks]

Create an image dataset for classification with 120 images ( ‘.jpg’  format), featuring at least two cate- gories. Resize or crop the images to a uniform size of 128 × 128 pixels.  briefly describe the dataset you constructed.

2. Data Loading [10 marks]

Load your dataset, randomly split the set into training set (80 images), validation set (20 images) and test set (20 images).

For the training set, use python commands to display the number of data entries, the number of classes, the number of data entries for each classes, the shape of the image size.  Randomly plot 10 images in the training set with their corresponding labels.

3. Convolutional Network Model Build [5 marks]

//  pytorch .network

class  Network(nn.Module):

def  __init__ (self,  num_classes=?):

super(Network,  self).__init__ ()

self.conv1  =  nn.Conv2d(in_channels=3,  out_channels=5,  kernel_size=3,  padding=1) self.pool  =  nn.MaxPool2d(2,  2)

self.conv2  =  nn.Conv2d(in_channels=5,  out_channels=10,  kernel_size=3,  padding=1) self.fc1  =  nn.Linear(10  *  5  *  5,  100)

self.fc2  =  nn.Linear(100,  num_classes)

def  forward(self,  x):

x  =  self.pool(F.relu(self.conv1(x)))

x  =  self.pool(F.relu(self.conv2(x)))

x  =  x.view(-1,  10  *  5  *  5)

x  =  self.fc1(x)

x  =  self.fc2(x)

return  x

Implement Network, and complete the form below according to the provided Network. Utilize the symbol ‘-’ to represent sections that do not require completion. What is the difference between this model and AlexNet?

Layer

# Filters

Kernel Size

Stride

Padding

Size of

Feature Map

Activation Function

Input

Conv1


ReLU

MaxPool

Conv2


ReLU

FC1


-

-

-


ReLU

FC2


-

-

-

4. Training [10 marks]

Train the above Network at least 50 epochs. Explain what the lost function is, which optimizer do you use, and other training parameters, e.g., learning rate, epoch number etc.  Plot the training history, e.g., produce two graphs (one for training and validation losses, one for training and validation accuracy) that each contains 2 curves. Have the model converged?

5. Test [5 marks]

Test the trained model on the test set.  Show the accuracy and confusion matrix using python commands.

Q3. Real-world Application Questions [20 marks]

Give ONE specific  real-world problem  that  can  be  solved  by  neural networks.   Answer  the  questions  below (answer to  each  question should not  exceed 200 words) .

1.  Detail the issues raised by this real-world problem, and explain how neural networks maybe used to address these issues. [5 marks]

2.  Choose an established neural network to tackle the problem.  Specify the chosen network and indicate the paper in which this model was published. Why you choose it? Explain. [5 marks]

3.  How to collect your training data?  Do you need labeled data to train the network?  If your answer is yes, 請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標(biāo)簽:

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代做代寫COMPSCI 4091 Advanced Networked Systems
  • 下一篇:CSCI 2033代做、代寫Python, C++/Java編程
  • 無相關(guān)信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明西山國家級風(fēng)景名勝區(qū)
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗(yàn)證碼平臺 幣安官網(wǎng)下載 歐冠直播 WPS下載

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    成a人片国产精品_色悠悠久久综合_国产精品美女久久久久久2018_日韩精品一区二区三区中文精品_欧美亚洲国产一区在线观看网站_中文字幕一区在线_粉嫩一区二区三区在线看_国产亚洲欧洲997久久综合_不卡一区在线观看_亚洲欧美在线aaa_久久99精品国产_欧美卡1卡2卡_国产精品你懂的_日韩精品91亚洲二区在线观看_国内一区二区视频_91丨国产丨九色丨pron
    成人免费av资源| 成人不卡免费av| 国产剧情一区二区三区| 欧美日韩国产乱码电影| 国产精品三级视频| 狠狠色丁香婷婷综合| 色偷偷一区二区三区| 欧美国产激情一区二区三区蜜月| 日本色综合中文字幕| 欧美在线播放高清精品| 亚洲欧洲三级电影| 国产a精品视频| 日韩一区二区三区视频在线| 亚洲6080在线| 在线观看日韩一区| 久久成人羞羞网站| 欧美在线观看一二区| 久久久蜜桃精品| 另类综合日韩欧美亚洲| 欧美日韩国产影片| 亚洲一区影音先锋| 韩国一区二区三区| 精品三级在线看| 日韩黄色免费网站| 色综合久久久久| 欧美videos大乳护士334| 亚洲成人一二三| 午夜伦理一区二区| 成人高清视频免费观看| 欧美一区二区视频在线观看| 亚洲最色的网站| 91国内精品野花午夜精品| 国产喂奶挤奶一区二区三区| 日本不卡视频在线观看| 欧美日韩亚洲综合在线| 亚洲综合精品自拍| 成人免费视频国产在线观看| 国产日韩欧美综合一区| 亚洲一区在线播放| 在线日韩一区二区| 日本一区二区动态图| 亚洲电影欧美电影有声小说| 国产午夜久久久久| 日韩av电影免费观看高清完整版在线观看 | 成人av集中营| 国产日韩精品一区| 免费欧美高清视频| 热久久一区二区| 国产精品一区三区| 加勒比av一区二区| 亚洲制服丝袜av| 日韩综合小视频| 欧美日韩视频在线观看一区二区三区| 日韩亚洲欧美一区| 国产综合成人久久大片91| 欧美一区二区三区人| 日韩精品免费视频人成| jlzzjlzz亚洲日本少妇| 激情五月婷婷综合| 日韩一级完整毛片| 九九精品视频在线看| 国模冰冰炮一区二区| 色婷婷久久久亚洲一区二区三区| 日韩一区二区三区电影| 亚洲另类一区二区| 亚洲狼人国产精品| 99这里都是精品| 久久久久久久综合日本| 欧美日韩免费观看一区三区| 蜜臀av一区二区| 国产激情视频一区二区三区欧美| 日韩在线一区二区| 亚洲国产日韩在线一区模特| 亚洲国产欧美在线人成| 亚洲天堂免费看| 欧美精品一区二区在线观看| 久久久噜噜噜久久中文字幕色伊伊| 亚洲女爱视频在线| 亚洲日本va在线观看| 91精品国产免费久久综合| 欧美mv和日韩mv的网站| 自拍偷拍亚洲综合| 最新中文字幕一区二区三区 | 午夜av一区二区三区| 综合电影一区二区三区| 国产成人精品免费视频网站| 久久99精品网久久| 人人超碰91尤物精品国产| 精品美女一区二区| 色婷婷久久久久swag精品| 亚洲精品一区二区三区四区高清| 7777精品伊人久久久大香线蕉经典版下载 | aaa亚洲精品一二三区| 欧美美女一区二区| 国产在线不卡视频| 亚洲一区二区三区四区在线免费观看 | 国产亚洲一区字幕| 国产欧美一区视频| 欧美三级一区二区| 成人午夜精品在线| 精品亚洲aⅴ乱码一区二区三区| 国产欧美精品一区二区色综合| 日本一区二区免费在线观看视频| 亚洲一区二区精品3399| 久久综合九色综合久久久精品综合 | 国产一区二区看久久| 亚洲黄一区二区三区| 美女一区二区三区| 精品一区二区免费视频| k8久久久一区二区三区| 欧美一区二区三区四区高清| 三级欧美韩日大片在线看| 国产乱子伦一区二区三区国色天香| 91丨porny丨蝌蚪视频| 欧美中文一区二区三区| 日本一区二区视频在线| 久久精品国产99国产| 奇米精品一区二区三区四区 | 亚洲欧洲日本在线| 国产成人av资源| 在线观看免费亚洲| 日韩欧美黄色影院| 91.com视频| 欧美久久久久久久久久| 午夜视频久久久久久| 国产精品影视网| 亚洲一区在线视频观看| 91麻豆精品国产91久久久久 | 99re视频这里只有精品| 久久只精品国产| 国产日韩v精品一区二区| 欧美日韩电影在线| 国产麻豆精品在线| 在线免费观看日本一区| 成人午夜激情在线| 美女在线一区二区| 国产亚洲一区二区三区在线观看| 国产二区国产一区在线观看| 亚洲永久精品国产| 亚洲欧美一区二区三区极速播放| 欧美日韩三级在线| 欧美精品色一区二区三区| 天堂蜜桃一区二区三区| 成人小视频在线| 国内偷窥港台综合视频在线播放| 热久久久久久久| 亚洲素人一区二区| 成人精品gif动图一区| 精品一区二区三区免费| 丝袜美腿亚洲一区二区图片| 国产精品国产三级国产专播品爱网 | 亚洲精品欧美在线| 色综合久久综合网97色综合| 国产精品1024| 亚洲视频 欧洲视频| 丁香婷婷综合色啪| 在线观看视频一区二区欧美日韩| 国产一区二区伦理片| 欧美日韩另类一区| 东方欧美亚洲色图在线| 天使萌一区二区三区免费观看| 亚洲卡通动漫在线| 国产精品第五页| av福利精品导航| 日韩一区欧美小说| 国产福利精品导航| 日韩精品一卡二卡三卡四卡无卡| 国产亚洲欧美在线| 国产偷国产偷精品高清尤物| 一本色道久久综合亚洲91| 国产一区二区三区观看| 午夜精品久久久久| 日韩欧美一级精品久久| 国产亚洲成av人在线观看导航 | 一区二区三区精品久久久| 一区二区三区成人| 日本美女视频一区二区| 天天综合网 天天综合色| 精品国产一区二区亚洲人成毛片| 五月天久久比比资源色| 国产日韩精品一区| 91精选在线观看| 久久国产精品无码网站| 国产尤物一区二区| 亚洲女爱视频在线| 中文字幕日本乱码精品影院| 26uuu精品一区二区| 972aa.com艺术欧美| 亚洲天堂网中文字| 免费av成人在线| 精品久久久久香蕉网| 色屁屁一区二区| 日韩精品一区二区三区视频 | 一区二区三区成人在线视频| 欧美视频一区二区三区四区| 国产剧情av麻豆香蕉精品| 欧美体内she精高潮| 一区二区三区中文字幕精品精品| 亚洲一区二区3| 亚洲自拍偷拍九九九|