成a人片国产精品_色悠悠久久综合_国产精品美女久久久久久2018_日韩精品一区二区三区中文精品_欧美亚洲国产一区在线观看网站_中文字幕一区在线_粉嫩一区二区三区在线看_国产亚洲欧洲997久久综合_不卡一区在线观看_亚洲欧美在线aaa_久久99精品国产_欧美卡1卡2卡_国产精品你懂的_日韩精品91亚洲二区在线观看_国内一区二区视频_91丨国产丨九色丨pron

代寫 CSCI1440/2440 Homework 3

時間:2024-02-16  來源:  作者: 我要糾錯


Homework 3: Myerson’s Lemma CSCI1440/2440

2024-02-08

Due Date: Tuesday, February 20, 2024. 11:59 PM.

We encourage you to work in groups of size two. Each group need only submit one solution. Your submission must be typeset using LATEX. Please submit via Gradescope with you and your partner’s Banner ID’s and which course you are taking.

For 1000-level credit, you need only solve the first three problems. For 2000-level credit, you should solve all four problems.

1 The All-Pay Auction

In an all-pay auction, the good is awarded to the highest bidder, but rather than only the winner paying, all bidders i must pay their bid: i.e., ui = vixi − pi.

Using the envelope theorem, derive (necessary conditions on) the symmetric equilibrium of a symmetric all-pay auction in which the bidders’ values are drawn i.i.d. from some bounded distribution F.

2 Allocation Rule Discontinuity

Fix a bidder i and a profile v−i. Myerson’s lemma tells us that incen-

tive compatibility and individual rationality imply two properties: 1. Allocation monotonicity: one’s allocation should not decrease as

 one’s value vi increases.

2. Myerson’s payment formula:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

xi(z,v−i)dz,

∀i ∈ [n],∀vi ∈ Ti,∀v−i ∈ T−i. (1)

In a second-price auction, the allocation rule is piecewise constant on any continuous interval. That is, bidder i’s allocation function is a Heaviside step function,1 with discontinuity at vi = b∗, where b∗ is the highest bid among all bidders other than i (i.e., b∗ = maxj̸=i vj):

1, if vi ≥ b∗ xi(vi,v−i) =

0, otherwise. Observe that ties are broken in favor of bidder i.

1 This is the canonical step function, whose range is [0, 1].

 

Given this allocation rule, the payment formula tells us what i should pay, should they be fortunate enough to win:

Z vi 0

pi(vi,v−i) = vixi(vi,v−i)−

?Z b∗

xi(z,v−i)dz

=vi(1)−

= vi(1)−(0+vi −b∗)

= b∗.

Alternatively, by integrating along the y-axis (i.e., R f (b) f −1 (y)dy),2

f (a)

bidder i’s payment can be expressed as follows: for ε ∈ (0, 1),

2 As the allocation function, call it f , is not invertible, but is weakly

increasing and right continuous, we define f(−1)(y) = inf{x | f(x) ≥ y}: e.g., f−1(1/2) = b∗.

Z vi ?dx (z,v )? pi(vi,v−i) = z i −i dz

Z ε Z 1−ε ?dxi(z,v−i)? = z(0)dz+ z

Z vi ? 0dz+ ∗ 1dz

0b

homework 3: myerson’s lemma 2

0 dz

0 ε dz 1−ε Z1−ε ∗

= bdy ε

∗ Z 1−ε =b dy ε

= b∗,

because the inverse of the allocation function is b∗, for all y ∈ (0, 1),

and limε→0 R 1−ε dy = 1. Intuitively, we can conclude the following ε

from this derivation: pi(vi, v−i) = b∗ · [jump in xi(·, v−i) at b∗]. Suppose that the allocation rule is piecewise constant on the con-

tinuous interval [0, vi], and discontinuous at points {z1, z2, . . . , zl} in this interval. That is, there are l points at which the allocation jumps from x(zj, v−i) to x(zj+1, v−i) (see Figure 1). Assuming this “jumpy” allocation rule is weakly increasing in value, prove that Myerson’s payment rule can be expressed as follows:

l

pi(vi, v−i) = ∑ zj · ?jump in xi(·, v−i) at zj? . (2) j=1

3 Sponsored Search Extension

In this problem, we generalize our model of sponsored search to include an additional quality parameter βi > 0 that characterizes each bidder i. With this additional parameter, we can view αj as the probability a user views an ad, and βi as the conditional probability that a user then clicks, given that they are already viewing the ad. Note that αj, the view probability, depends only on the slot j, not

Z 1

dz+ z(0)dz

 

xi(z3, v−i) xi(z2, v−i) xi(z1, v−i)

Figure 1: Allocation Rule. Shaded area represents payment.

z1z2 z3 Value, vi

on the advertiser occupying that slot, while βi, the conditional click probablity, explicitly depends on the advertiser i.

In this model, given bids v, bidder i’s utility is given by: ui(v) = βivix(v) − p(v)

So if bidder i is allocated slot j, their utility is: ui(v) = βiviαj − p(v)

Like click probabilities, you should assume qualities are public, not private, information.

1.

2.

4

optimization. The problem can be stated as follows:

There is a knapsack, which can hold a maximum weight of W ≥ 0. There are n items; each item i has weight wi ≤ W and value vi ≥ 0. The goal is to find a subset of items of maximal total value with total weight no more than W.

Written as an integer linear program,

n

max ∑ xivi

x i=1

Define total welfare for this model of sponsored search, and then describe an allocation rule that maximizes total welfare, given the bidders’ reports. Justify your answer.

Argue that your allocation rule is monotonic, and use Myerson’s characterization lemma to produce a payment rule that yields a DSIC mechanism for this sponsored search setting.

The Knapsack Auction

The knapsack problem is a famous NP-hard3 problem in combinatorial

3 There are no known polynomial-time solutions.

homework 3: myerson’s lemma 3

Allocation, xi(vi, v−i)

 

subject to

n

∑xiwi ≤W i=1

xi∈{0,1}, ∀i∈[n]

The key difference between optimization and mechanism design problems is that in mechanism design problems the constants (e.g., vi and wi) are not assumed to be known to the center / optimizer; on the contrary, they must be elicted, after which the optimization problem can then be solved as usual.

With this understanding in mind, we can frame the knapsack problem as a mechanism design problem as follows. Each bidder

has an item that they would like to put in the knapsack. Each item is characterized by two parameters—a public weight wi and a private value vi. An auction takes place, in which bidders report their values. The auctioneer then puts some of the items in the knapsack, and the bidders whose items are selected pay for this privilege. One real- world application of a knapsack auction is the selling of commercial snippets in a 5-minute ad break (e.g., during the Superbowl).4

Since the problem is NP-hard, we are unlikely to find a polynomial- time welfare-maximizing solution. Instead, we will produce a polynomial- time, DSIC mechanism that is a 2-approximation of the optimal wel-

fare. In particular, for any set possible set of values and weights, we

aim to always achieve at least 50% of the optimal welfare.

We propose the following greedy allocation scheme: Sort the bid- ders’ items in decreasing order by their ratios vi/wi, and then allocate items in that order until there is no room left in the knapsack.

1. Show that the greedy allocation scheme is not a 2-approximation by producing a counterexample where it fails to achieve 50% of the optimal welfare.

Alice proposes a small improvement to the greedy allocation scheme. Her improved allocation scheme compares the welfare achieved by the greedy allocation scheme to the welfare achieved

by simply putting the single item of highest value into the knapsack.5 She then uses whichever of the two approaches achieves greater wel- fare. It can be shown that this scheme yields a 2-approximation of optimal welfare. We will use it to create a mechanism that satisfies individual rationality and incentive compatibility.

2. Argue that Alice’s allocation scheme is monotone.

3. Now use Myerson’s payment formula to produce payments such that the resulting mechanism is DSIC and IR.

4 Here, the weight of a commercial is its time in seconds.

homework 3: myerson’s lemma 4

5 Note that weakly greater welfare could be achieved by greedily filling the knapsack with items in decreasing order of value until no more items

fit. We do not consider this scheme, because it is unnecessary to achieve

a 2-approximation; however, it is an obvious heuristic that anyone solving this problem in the real world
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

標簽:

掃一掃在手機打開當前頁
  • 上一篇:代寫ACP Assignment 1 Specificaons
  • 下一篇:代做ECON 323 Econometric Analysis 2
  • 無相關信息
    昆明生活資訊

    昆明圖文信息
    蝴蝶泉(4A)-大理旅游
    蝴蝶泉(4A)-大理旅游
    油炸竹蟲
    油炸竹蟲
    酸筍煮魚(雞)
    酸筍煮魚(雞)
    竹筒飯
    竹筒飯
    香茅草烤魚
    香茅草烤魚
    檸檬烤魚
    檸檬烤魚
    昆明西山國家級風景名勝區
    昆明西山國家級風景名勝區
    昆明旅游索道攻略
    昆明旅游索道攻略
  • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    成a人片国产精品_色悠悠久久综合_国产精品美女久久久久久2018_日韩精品一区二区三区中文精品_欧美亚洲国产一区在线观看网站_中文字幕一区在线_粉嫩一区二区三区在线看_国产亚洲欧洲997久久综合_不卡一区在线观看_亚洲欧美在线aaa_久久99精品国产_欧美卡1卡2卡_国产精品你懂的_日韩精品91亚洲二区在线观看_国内一区二区视频_91丨国产丨九色丨pron
    久久er精品视频| 国产精品18久久久久久久久| 2021中文字幕一区亚洲| 精品视频免费看| 中文字幕不卡在线观看| 日本免费在线视频不卡一不卡二| 99国内精品久久| 久久久综合激的五月天| 青青草原综合久久大伊人精品| 日本黄色一区二区| 国产精品卡一卡二卡三| 国产精品一区免费视频| 精品国产凹凸成av人网站| 日韩成人精品在线观看| 欧美日韩一区二区在线观看 | 欧美福利一区二区| 亚洲婷婷综合色高清在线| 国产成人av一区二区| 2欧美一区二区三区在线观看视频 337p粉嫩大胆噜噜噜噜噜91av | 日韩理论电影院| 国产高清精品久久久久| 久久av资源网| 粉嫩欧美一区二区三区高清影视| 精品国产麻豆免费人成网站| 美国毛片一区二区| 欧美一级夜夜爽| 青草av.久久免费一区| 制服丝袜国产精品| 日日夜夜免费精品视频| 欧美日本一区二区在线观看| 午夜精品福利视频网站| 欧美日韩激情一区| 婷婷国产v国产偷v亚洲高清| 制服丝袜亚洲色图| 奇米综合一区二区三区精品视频| 宅男在线国产精品| 日本v片在线高清不卡在线观看| 欧美精品在线观看播放| 日韩国产欧美三级| 欧美一级一级性生活免费录像| 日韩中文字幕亚洲一区二区va在线| 欧美日韩成人一区| 亚洲欧洲日韩av| 一本大道av一区二区在线播放| 亚洲人xxxx| 91久久精品一区二区三| 亚洲高清免费在线| 欧美一级高清大全免费观看| 日本一不卡视频| 狠狠色丁香久久婷婷综合丁香| 不卡高清视频专区| 亚洲精选视频免费看| 亚洲欧美在线aaa| 亚洲国产视频a| 制服.丝袜.亚洲.中文.综合| 美女久久久精品| 26uuu精品一区二区| 成人性生交大片| 亚洲私人黄色宅男| 欧美日韩一区二区三区四区 | 成人手机电影网| 中文字幕亚洲在| 91国产免费看| 日韩有码一区二区三区| 欧美成人福利视频| 国精品**一区二区三区在线蜜桃| 国产欧美精品区一区二区三区 | 婷婷久久综合九色国产成人| 日韩欧美一级二级三级久久久| 国产美女精品人人做人人爽| 成人一区二区三区视频在线观看| 欧美一区二区国产| 国产美女在线观看一区| 亚洲欧美偷拍三级| 欧美高清dvd| 国产成a人亚洲| 夜夜嗨av一区二区三区中文字幕| 欧美一级在线免费| 成人性生交大片免费| 亚洲成人久久影院| 26uuuu精品一区二区| 99re这里只有精品首页| 视频一区视频二区中文字幕| 久久久噜噜噜久久中文字幕色伊伊 | 亚洲小说春色综合另类电影| 91精品国产高清一区二区三区蜜臀| 国产精品一线二线三线| 一区av在线播放| 久久欧美一区二区| 91久久免费观看| 国内精品伊人久久久久av影院| 911精品产国品一二三产区| 国产永久精品大片wwwapp| 亚洲免费成人av| 精品欧美乱码久久久久久1区2区| av高清久久久| 日韩精品三区四区| 国产精品传媒入口麻豆| 91精品国产手机| 精品国一区二区三区| 国产成人av资源| 午夜视频在线观看一区二区三区| 久久精品欧美日韩| 欧美日韩国产美女| av网站免费线看精品| 老司机免费视频一区二区三区| 国产精品一区二区91| 日韩欧美精品三级| 99re这里只有精品首页| 精品一区二区三区免费视频| 亚洲精品菠萝久久久久久久| 2022国产精品视频| 欧美日韩精品高清| 成人动漫中文字幕| 蜜臀av亚洲一区中文字幕| 日韩美女视频一区二区| 久久免费精品国产久精品久久久久| 欧美色网站导航| 不卡在线观看av| 韩国三级中文字幕hd久久精品| 亚洲丶国产丶欧美一区二区三区| 国产精品视频九色porn| 欧美xxxxxxxxx| 欧美三区在线观看| 视频在线在亚洲| 一区二区三区资源| 国产精品三级电影| 精品国产91久久久久久久妲己| 欧美日韩国产片| 色88888久久久久久影院按摩| 国产成人午夜电影网| 美女网站色91| jvid福利写真一区二区三区| 日本欧美肥老太交大片| 亚洲自拍与偷拍| 中文字幕日韩一区| 国产日产亚洲精品系列| 日韩免费高清视频| 91精品国产色综合久久ai换脸| 欧美性欧美巨大黑白大战| 97国产一区二区| av在线播放一区二区三区| 国产精品乡下勾搭老头1| 捆绑紧缚一区二区三区视频| 天天射综合影视| 亚洲电影一区二区| 亚洲一区二区三区小说| 一区二区三区丝袜| 亚洲人成人一区二区在线观看 | 国产资源在线一区| 蜜桃一区二区三区在线| 婷婷国产v国产偷v亚洲高清| 亚洲一区二区三区免费视频| 亚洲精品乱码久久久久久| 自拍偷在线精品自拍偷无码专区| 亚洲国产精华液网站w| 欧美在线不卡一区| 91免费版在线| 91丨porny丨最新| 91在线免费视频观看| 97aⅴ精品视频一二三区| 99久久伊人网影院| 97精品久久久久中文字幕| 91亚洲精华国产精华精华液| 99久久99精品久久久久久 | 欧美激情在线免费观看| 337p粉嫩大胆色噜噜噜噜亚洲| 精品久久人人做人人爽| 精品久久久久香蕉网| 26uuu国产一区二区三区| 久久日韩精品一区二区五区| 午夜婷婷国产麻豆精品| 精品播放一区二区| 日韩精品综合一本久道在线视频| 欧美一级xxx| 欧美成人a视频| 久久一区二区视频| 日本一区二区视频在线| 中文字幕av一区二区三区免费看| 国产精品少妇自拍| 国产精品第一页第二页第三页| 亚洲免费高清视频在线| 亚洲成人综合视频| 日韩成人免费在线| 国产在线精品一区二区夜色 | 91精品国产色综合久久| 日韩免费看的电影| 国产偷国产偷精品高清尤物| 国产精品久久精品日日| 国产精品久久久久久亚洲毛片| 日韩欧美在线网站| 久久久99久久| 亚洲欧洲性图库| 亚洲国产一二三| 久久精品国产一区二区三 | 欧美男女性生活在线直播观看| 欧美日韩精品系列| 日韩欧美亚洲一区二区| 久久久久国产成人精品亚洲午夜| 国产精品成人在线观看|